
October 10, 2007 / Vol. 5, No. 10 / CHINESE OPTICS LETTERS 573

A robust method for inverse halftoning via
two-dimensional nonlinear pyramid
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Based on the principle of spatial pyramid for signal, a multi-scale transform of two-dimensional (2D) in-
terpolating pyramid is constructed by the nonlinear median operator. The transform properties of error
diffuse halftoning noise on multiple scales are investigated and analyzed through experiments. According
to these properties, a robust inverse halftoning method is proposed. The halftoning image is firstly pre-
processed by a Gaussian low-pass filter, and decomposed by the one-scale transform. Then a Wiener filter
is employed to the detailed coefficients. Finally an inverse image is reconstructed. Experimental results
show that the proposed transform has the advantage of separating the halftoning noise and image detail
over linear multi-resolution transform. The presented inverse halftoning method performs some excellent
abilities on sharp edge, high peak signal-to-noise ratio (PSNR), and small memory requirement.

OCIS codes: 100.2810, 350.6980, 330.6130, 100.2000.

The process of rendition from continuous-tone images
into a medium on which only two levels can be displayed
is defined as digital halftoning[1]. It has become impor-
tant with the availability and adoption of bi-level devices
such as facsimile machine and plasma display. Inverse
halftoning is a reconstruction process of retrieving the
continuous-tone image from its halftoned version. The
applications of inverse halftoning can be found in diverse
areas of image compression, enhancement, scaling and
other processing on printed and facsimile images. In
these applications, image processing operations cannot
be directly performed on the image, and inverse halfton-
ing is essential[2].

The error diffuse (ED) halftoning is a nonlinear sys-
tem that has been proved by Ulichney[1], which only
introduces blue noise to halftoned image on median
and high frequencies. Simple smoothing means edges
will be reduced. Many different techniques are used
to reconstruct the inverse halftoning, including machine
learning[2,3], adaptive iteration[4], maximum a posteri-
ori (MAP) estimation[5], nonlinear filtering[6], and edge
enhancement[6,7]. But the iteration process and MAP
estimation involve more complex computation. And the
enhancement method will generate the illusive edges in
result when the image is halftoned by a bigger or hexag-
onal ED kernel. Focusing on the nonlinear feature of ED
system, two-dimensional median interpolating pyramid
transform (2D-MIPT) is presented. Using this nonlin-
ear pyramid transform, halftone noise can be separated
effectively. Furthermore, we propose a robust inverse
halftoning method for ED halftoning.

The Laplacian pyramid transform has been introduced
by Burt et al. and applied on image coding[8]. The it-
eration process of decomposition and reconstruction in
one-dimensional (1D) case is given in Fig. 1. Usually
the low-pass filters (LPFs) of W and W ′ are linear[8,9],
but they may also be nonlinear. Donoho et al. dis-
cussed a special nonlinear refinement scheme to replace
the stationary linear scheme for wavelet transforms[10].

The refinement scheme is based on polynomials which
come from the interpolating median function of the un-
derlying object. It is deployed in multi-resolution fash-
ion to construct nonlinear MIPT, and it has associated
forward and inverse transforms. Donoho’s results show
that nonlinear pyramid has a very different performance
compared with traditional wavelets when it copes with
non-Gaussian data. And it is effective to separate and
remove the Cauchy noise. Now we consider to make a lit-
tle change along with Refs. [10,11] to build the 2D-MIPT.

We define the median operator as follows. Given inte-
gers y1, y2, · · · , ya, and let y1 ≤ y2 ≤ · · · ≤ ya, then the
median operator is denoted as

median{y1, y2, · · · , ya} =
{
yb+1, a = 2b+ 1;
(yb + yb+1)/2, a = 2b.

(1)

Assuming that x0(m,n) is an original image, ψk ↑ rep-
resents the 2D-MIPT decomposition operator of xk →
xk+1 which transforms x0 to a sequence of lower spatial
resolution {x1, x2, x3, · · · }, and the lost detailed informa-
tion from xk → xk+1 is represented as {d1, d2, d3, · · · }.
Correspondingly, ψk ↓ represents the reconstruction
operator of xk+1 → xk with {x1, x2, x3, · · · } and
{d1, d2, d3, · · · }. Under these identifiers, the forward and
inverse 2D-MIPTs can be described as

ψk ↑: xk+1(m,n) =

median{xk(2m+ i, 2n+ j)|(i, j) ∈W b
i,j}, (2)

Fig. 1. Structure of pyramid decomposition and reconstruc-
tion.
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ψk ↓: x̂k(2m, 2n) = median{xk+1(m,n)}, (3)

x̂k(2m, 2n+ 1) = median{xk+1(m− 1, n), xk+1(m,n),

xk+1(m+ 1, n), xk+1(m− 1, n+ 1),

xk+1(m,n+ 1), xk+1(m+ 1, n+ 1)}, (4)

x̂k(2m+ 1, 2n) = median{xk+1(m,n− 1), xk+1(m,n),

xk+1(m,n+ 1), xk+1(m+ 1, n− 1),

xk+1(m+ 1, n), xk+1(m+ 1, n+ 1)}, (5)

x̂k(2m+ 1, 2n+ 1) = median{xk+1(m,n),

xk+1(m,n+ 1), xk+1(m+ 1, n),

xk+1(m+ 1, n+ 1)}, (6)

dk+1(m,n) = xk(m,n) − x̂k(m,n), (7)

where x̂k(m,n) is an approximate image for scale k,
dk+1(m,n) is a detailed image for scale (k + 1), W b

i,j is
a window on center (i, j) of size (2b+ 1) × (2b+ 1), and
usually b = 1.

Donoho has already proved that MIPT−1(MIPT(x)) =
x is true for the 1D case[10]. And the same can be proved
for the 2D case.

Following the 2D-MIPT, a lot of experiments are made
from fifty typical images to verify the capability of trans-
form which can separate detail and noise from halftoned
version. And we want to find out the properties of
halftoning noise for 2D-MIPT. Initially all of the im-
ages are halftoned by six kinds of ED kernels that are
usually used in ED halftoning: Floyd-Steinberg, Burk-
ers, Stucki, Sierra, Jarvis, and Stevenson[1]. Then the
preprocessed gray images which contain rich detail and
halftoning noise are generated from their halftones by
Gaussian LPF (3 × 3, σ = 0.6 − 0.8) because 2D-MIPT
cannot render halftones from [0,1] to [0,255]. With these

Fig. 2. Results of Lena for 2D-MIPT and FWT-7/9. (a)
Floyd-Steinberg halftone; (b) preprocessed image filtered
from (a) by Gaussian LPF; (c), (d) one-scale approximation
for 2D-MIPT and FWT-7/9; (e), (f) details for 2D-MIPT on
one and two scales.

Fig. 3. PDF curves of Lena for 2D-MIPT on three scales.
(a)− (c) PDF curves of details for originals and preprocessing
halftones for 1 − 3 scales, solid lines are for {d1

x, d2
x, d3

x} and
dashed lines for {d1

b , d
2
b , d

3
b}; (d) Wiener filtering result of (a).

Table 1. Average Offsets of PDF for Fifty Originals
and Their Preprocessing Halftones

from One to Three Scales

ED Kernel d1(m, n) d2(m, n) d3(m, n)

Floyd 6.2611 0.7902 0.1642

Burkers 8.5849 1.2330 0.9047

Stucki 10.2667 1.5552 0.3857

Sierra 12.8083 1.8351 0.6255

Jarvis 13.9101 2.2777 0.8462

Stevenson 13.8132 6.2323 1.3129

preparations the original image x(m,n) and its prepro-
cessed one b(m,n) are decomposed by 2D-MIPT on three
scales. One of the results is shown in Fig. 2. The se-
quences {d1

x, d
2
x, d

3
x, x

3} and {d1
b , d

2
b , d

3
b , b

3} are obtained.
Using the coefficients di

x and di
b, the curves of probability

distribution function (PDF) on each scale are plotted,
as shown in Fig. 3. Their average offsets of peaks are
calculated, the results are listed in Table 1. In order to
compare the separating capability with linear transform,
the image is also decomposed by the wavelet function of
FWT-7/9. The result is shown in Fig. 2(d). From these
experiments the properties of ED noise for 2D-MIPT can
be analyzed.

Property 1. As shown in Fig. 2, there is little noise in 1-
scale approximation x1

b(m,n) and 2-scale detail d2
b(m,n)

for 2D-MIPT. But the heavy noise remains on 1-scale
approximation for FWT-7/9 because the wavelet decom-
position is based on linear operator and has no adap-
tive capability to separate the nonlinear noise from ED
halftone.

Property 2. From Fig. 3 and Table 1, the largest
difference of PDF is found between d1

x(m,n) and
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d1
b(m,n), and the others gradually go similar. It in-

dicates that most of the halftoning noise is concentrated
on detail of d1

b(m,n) for 2D-MIPT. And the power of
halftoning noise is proportional to the size and shape of
ED kernel.

Property 3. Focusing on the heavily noised detail
of d1

b(m,n), several de-noising methods are employed
such as finite impulse response (FIR) filter by spline
function[6], morphological filtering[11], Wiener filtering
and thresholding[10,12]. The best result from Wiener
filtering is shown in Fig. 3(d). The PDF differences and
corrections between filtering and original are calculated
in Table 2.

According to the above investigation and analysis, we
use the nonlinear pyramid transform on multiple scales
and de-noising as the wavelet case in Refs. [10 − 12]. A
block diagram of the proposed inverse halftoning algo-
rithm via 2D-MIPT is shown in Fig. 4. A small size
of Gaussian LPF is applied on halftone b, and the pre-
processed image x0 is gotten which contains rich details
and halftoning noise. Then the one-scale 2D-MIPT is
selected to decompose x0 into approximation x1 and
detail d1 with Properties 1 and 2 and efficiency of al-
gorithm considered. Along with Property 3, a Wiener
filter is employed to de-noise the distorted image d1, the
cleaned detail dw1 is obtained. Using inverse transform
(IMIPT), the inverse halftoning image x̂0 will be recon-
structed from dw1 and x1. The result is reconstructed
from median interpolating function, a fewer impulse noise
will be introduced into x̂0, so a median filter h is added
for post-processing to generate the final result y0.

The ED kernels of Jarvis and Stevenson are bigger
than others, and the latter is a hexagonal grid, so
their halftoned version cannot render the gray level for
[1/2,2/3]. This will cause the visible disturbing artifact
in halftoning patterns. If the inverse method cannot
separate it very well, the artifacts will be processed as
ill-edges. Considering this causation and Property 3, the
new method adjusts all size of filters from 3× 3 to 5× 5
for the version which is halftoned by bigger or hexagonal
ED kernel.

Table 2. Average Offsets and Corrections of PDF
for Fifty Originals and Their 2D-MIPT Inverse

Halftones on One Scale

ED Kernel d1(m, n) Offset d1(m, n) Correction

Floyd 3.4361 2.8250

Burkers 3.2729 5.3120

Stucki 3.4939 6.7728

Sierra 3.8158 8.9925

Jarvis 4.3380 9.5721

Stevenson 4.4285 9.4037

Fig. 4. Block diagram of the proposed inverse halftoning al-
gorithm.

Table 3. PSNRs for Different Kinds of ED Kernel
Halftones by Proposed Algorithm (dB)

ED Kernel Peppers Lena Zelda

Floyd 31.0291 31.3512 33.7990

Burkers 30.6959 30.9326 33.5893

Stucki 30.0800 30.5117 33.1917

Sierra 29.8896 30.4056 33.0274

Jarvis 29.6751 30.1299 32.7299

Stevenson 28.0865 28.4065 30.7867

Table 4. Performance Comparison of Inverse
Halftoning Algorithms in Terms of PSNR (dB)

Algorithm Peppers Lena Zelda

LUT[2,3] 28.68 28.39 31.83

POCS[4] 27.59 28.64 —

MAP[5] 27.72 29.60 —

Nonlinear[6] 28.65 30.79 —

Wavelet[7] 28.56 30.38 —

Proposed 31.03 31.35 33.80

Fig. 5. Inverse halftoning results of Jarvis and Stevenson
halftones for Wavelet[7] and proposed algorithm. (a) Wavelet
for Jarvis, PSNR = 27.0775 dB; (b) proposed for Jarvis,
PSNR = 30.1299 dB; (c) Wavelet for Stevenson, PSNR =
23.0541 dB; (d) proposed for Stevenson, PSNR = 28.4065
dB.

Experiments were performed on Peppers, Lena, and
Zelda in size of 512 × 512 pixels. First of all they were
halftoned by six different kinds of ED kernels. Then
the proposed method worked on these halftones, and
their peak signal-to-noise ratios (PSNRs) are given in
Table 3. We also compared our results with several
previous inverse halftoning works such as look-up ta-
ble (LUT)[2,3], projection onto convex sets (POCS)[4],
MAP[5], Nonlinear[6], and Wavelet[7]. All the PSNRs are
shown in Table 4. The results for Jarvis and Stevenson
halftones are specially shown in Fig. 5.

In conclusion, using nonlinear median operator and in-
terpolating function, the multi-scale 2D-MIPT is given.
With this transform, the ED halftoning noise can be sep-
arated better than the transform constructed by linear
operator, and a new inverse halftoning algorithm is pre-
sented. The computational complexity and memory re-
quirement of this method are very low because it only
processes image in spatial field. Experiments demon-
strate that the method shows efficient edge preserving
ability, smooth inverse result, and robustness to different
ED kernels. How to expand it for dither or color halftone
is an interesting research in the future.
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